
Brought to you by

Brought to you by

 Our vision is to transform the way teams test and release
distributed systems.

VISION

Brought to you by

Integration testing is hard...

The numbers
Four key indicators of high performing organisations1

 Need < 1 day lead time for changes = 106x faster time from commit -> deploy

 Are able to deploy on demand = 208x more deployments

 Have change failures rates < 15% = 7x lower change failure rates

 Can restore services within 1 hour = 2604x faster MTTR

BACKGROUND

Brought to you by1 Data from the DORA 2019 State of DevOps report

https://cloud.google.com/devops/state-of-devops

The numbers
Challenges facing the market

Only 20% of companies are “elite” performers1

81% of teams spend a third of their time or more on fixing environments2

36% of teams are impacted by wait times and cost of test environments2

76% spent one third of their time or more managing test data2

1 Data from the DORA 2019 State of DevOps report
2 Data from a Capgemini report on continuous testing in March 2019

BACKGROUND

Brought to you by

https://cloud.google.com/devops/state-of-devops
https://www.capgemini.com/us-en/wp-content/uploads/sites/4/2019/03/CTR-Infographic.pdf

In 2013 we created Pact, an Open Source tool to solve this
problem. In 2019, we launched Pactflow to enable

organisations to do this at scale

ABOUT PACTFLOW

Brought to you by

ABOUT PACTFLOW

Journey
How we got here

2014

Pact Open Sourced (Ruby, JVM),
initial adoption. Microservices

becomes “a thing”

Dec 2016 - 2018

MVP: Launch of the “Hosted
Pact Broker” - an early MVP of

Pactflow. ~1000 signups

2013

Pact created on a client project
at realestate.com.au to solve

problems testing microservices

2015 - 2016

Huge growth in popularity and
language support (.NET, Go, JS,
Python etc.)

2019

🚀 Launch of Pactflow: a
commercial project to solve
integration testing at scale

2020+

Goal: Sustainable business
>1500 customers

Solving bigger problems
In Product + OSS

- Slow

- Fragile

- Test data management

- Test environment management

- Coverage?

- All-at-once painful deployments

- Teams wait on build queues

HOW WE TEST MICROSERVICES NOW

Microservice A

API Gateway

Microservice B

JSON/HTTP

JSON/HTTP JSON/HTTP

JSON/HTTP

Microservice C
JSON/XML

MQ

JSON/HTTP

JSON/HTTP

The old way...
Why this is hard

#1 #2 #3 #4 #5

HOW WE TEST MICROSERVICES NOW

Scaling

Cost /
Complexity
/ Time

Number teams / components

Build time

Environments

Risk associated with
change

Teams + Components
Linear increase in teams
and components results in
exponential increase in
other factors

Developer idle time
(queues)

Where do we go wrong?

HOW WE TEST MICROSERVICES NOW

Brought to you by

HOW WE TEST MICROSERVICES NOW

Brought to you by

● Release coupling
● Environment management vs developer idle time
● Slower pipeline leading to batching
● Batching increases failure and defect rates
● Increased Integration tests failures
● Increased deployment risk
● Separate testing teams introduced
● “Release Manager” introduced to govern the entire release process
● Tech debt accumulation

We used the same tools and approaches that worked for monoliths and applied it to distributed systems

Where we went wrong
Cause and effect

HOW WE TEST MICROSERVICES NOW

“Integration tests are a scam”

- JB Rainsberger

HOW WE TEST MICROSERVICES NOW

Scam, you say? Justify!

Integrated tests are:

● Slow
● Fragile
● Hard to manage

When they fail, you can’t point to the problem!

HOW WE TEST MICROSERVICES NOW

HOW WE TEST MICROSERVICES NOW

Branches per box vs test cases required

2 code branches = 128 tests
5 code branches = 78,125 tests
10 code branches = 10M tests

HOW WE TEST MICROSERVICES NOW

A BETTER WAY TO TEST MICROSERVICES

Good tests have the exact opposite properties

A BETTER WAY TO TEST MICROSERVICES

Mocks to the rescue?

A BETTER WAY TO TEST MICROSERVICES

A BETTER WAY TO TEST MICROSERVICES

A BETTER WAY TO TEST MICROSERVICES

21

Mocks
Solved problems New problems

● Hard to keep both sides in
sync

● Fast feedback

● Few dependencies

● No dedicated environment

● Reliable

● Easy to debug

A BETTER WAY TO TEST MICROSERVICES

Dictator Driven Contracts

A BETTER WAY TO TEST MICROSERVICES

How to: dictator driven contracts

1. Sit in ivory tower and postulate
2. Document perfect API (Swagger/OAS etc.)
3. Create said API
4. Publish said document to consumers
5. Repeat steps 1-4

A BETTER WAY TO TEST MICROSERVICES

A BETTER WAY TO TEST MICROSERVICES

A BETTER WAY TO TEST MICROSERVICES

A BETTER WAY TO TEST MICROSERVICES

Solved problems New problems

● Who is using my API?
● Requires diligence to ensure

backwards compatibility
● Developers hate versioning
● Limited by expressiveness of

specification (vague)
● = Hard to get 100% coverage

● Good documentation

● Aides discoverability and
communication between
teams/organisations

● Clearer expectations on API

Specification first design

A BETTER WAY TO TEST MICROSERVICES

Dictator Consumer Driven Contracts

A BETTER WAY TO TEST MICROSERVICES

A BETTER WAY TO TEST MICROSERVICES

Benefits

You know when you break a consumer

You get a form of documentation

You can test things independently

Consumer Driven Contracts

HOW IT SHOULD BE DONE

What is Pact?
Microservice testing made easy

Benefits:

- Focus on testing a single integration at
a time - without having to deploy

- No dedicated test environments
- Get fast, reliable feedback
- Tests that scale linearly
- Deploy services independently

PRODUCT

Microservice A

API Gateway

Microservice B

JSON/HTTP

JSON/HTTP JSON/HTTP

JSON/HTTP

What is Pact?
Microservice testing made easy

Pact is an Open Source tool that makes it easy to test
microservices quickly, independently and release safely.

Pact is already used by thousands of companies
worldwide.

Use cases:

- Javascript web applications (e.g. React)
- Native mobile applications
- RESTful microservices with JSON and XML
- Asynchronous messaging (e.g. MQ)
- Removing end-to-end integrated tests
- Reducing reliance on complex test

environments
Microservice C

JSON/XML

MQ

JSON/HTTP

Open Source
...and in your preferred language

PRODUCT

Brought to you by

HOW PACT WORKS

DEMO

Brought to you by

Contract

{

 “id”: 1234,

 “items”:[

 ...

],

}

Consumer

Provider

PRODUCT

Order API

GET /orders/1234

HOW IT WORKS

HOW IT WORKS

Mock

HOW IT WORKS

Mock

GET /orders/1234

HOW IT WORKS

Mock

{

 “id”: 1234,

 “items”:[

 ...

],

}

GET /orders/1234

HOW IT WORKS

Mock

HOW IT WORKS

Mock

GET /orders/1234

HOW IT WORKS

Mock

{

 “id”: 1234,

 “items”:[

 ...

],

}

GET /orders/1234

HOW IT WORKS

Mock ✔

HOW IT WORKS: CONSUMER

Adapters

Services

Domain

Repositories

Co
lla

bo
ra

to
rs

External
Service

Scope of
consumer test

HOW IT WORKS: PROVIDER

Scope of Provider
Test

Adapters

Services

Domain

Repositories Co
lla

bo
ra

to
rs

mock

In-memory database

DEMO

DEMO

Brought to you by

Introducing Pactflow

DEMO

Brought to you by

Pact
1. Sharing and collaborating on pacts between teams
2. Lifecycle management: managing contracts across code branches and environments
3. Orchestrating builds to know when it is safe to deploy
4. Integrating into your processes and tooling

CHALLENGES WITH PACT

Pactflow
Contract testing at scale

Additional Capabilities

- Fully managed platform + hardened for scale
- Better user experience
- Secure access management
- Collaboration and insights
- Expansion to other integration technologies*

* 2020 Roadmap

PRODUCT

Broker

Collaboration
Tools

Security, Identity + Access Management

Integrations

Pact + OSS Tooling

Protocols Insights

Intelligence
MQ

PRODUCT

Integrated collaboration tool to and share and manage pacts* between teams.

● API documentation that is guaranteed to be up-to date
● Visualisations of the relationships between your services
● Dashboards containing contract verification status
● Pact tagging and versioning
● Webhooks for integration and communication
● View pact diffs
● ...and more!

All powered by a RESTful API

PRODUCT

Did I mention README badges and integrations?

PRODUCT

PRODUCT

PRODUCT

● Verify that an application is safe to release
● Enables “matrix” style testing

Consumer Head (1.0.1) Consumer Prod (1.0.0)

Provider Head (2.0.0) ? ?

Provider Prod (1.1.13) ? Already tested

PRODUCT

$ pact-broker can-i-deploy
--app A --version 1
--app B --version 4

PRODUCT

PRODUCT

Brought to you by

Features
Instant API Stubs

Replace fragile test environments with lightning
fast + reliable hosted stubs

- Instant API backend for all contracts
- Reliable environment for UI e2e tests
- Simplify local development against

multiple backends
- Discover and explore other APIs

Find out more at pactflow.io/blog/hosted-stubs/

FEATURES

https://pactflow.io/blog/hosted-stubs/

Orchestrate complex build, test and deployment
pipelines.

- Trigger a build on your CI (such as Travis or
Bamboo)

- Publish your commit status to GitHub

- Notify your teams via Slack of a change to a
contract

Find out more at pactflow.io/blog/webhooks/

Brought to you by

Features
Webhooks

FEATURES

https://pactflow.io/blog/webhooks/

Brought to you by

Features
Secrets

Manage sensitive information with
our Secrets Management

All secrets are:

- Encrypted with customer
specific keys

- Redacted in all log files

- Hidden from all users in the UI

Find out more at
pactflow.io/blog/secrets/

FEATURES

https://pactflow.io/blog/secrets/

Understand build failures with detailed error reporting
via Verifications:

- Give visibility to consumer teams and reduce
time-to-diagnosis

- Breakdown of successful and failed
interactions

- Understand which field, header or status code
was the cause of the problem

Find out more at
pactflow.io/blog/verification-results/ Brought to you by

Features
Verification Results

FEATURES

https://pactflow.io/blog/verification-results/

Automate your Pactflow configuration
with Terraform:

- Pacticipants

- Webhooks

- Secrets

- API Tokens

Find out more at
https://pactflow.io/blog/terraform/

Brought to you by

Features
Infra-as-Code

FEATURES

https://pactflow.io/blog/terraform/

Choose how you want to authenticate and manage your users:

- Pactflow’s in built user database

- Github authentication 1

- Google OpenID connect 1

- SAML 2

Find out more at
pactflow.io/blog/saml-and-federated-authentication/

1 Available on Team or Business plans
2 Available only on Business plans

Brought to you by

Features
Social Login, SSO and SAML 2.0

FEATURES

https://pactflow.io/blog/saml-and-federated-authentication/

Integrate Pactflow into your SOC:

- Immutable audit log available via API

- Full traceability of access and system usage,
including references to IdP identities

Available to Business Plans

Find out more at
pactflow.io/blog/audit-api/

Brought to you by

Features
Audit Log

FEATURES

{
 "events": [
 {
 "uuid": "16WlpdLpDMzfMYxLTZYXYw",
 "timestamp": "2019-12-10T09:15:24.864+11:00",
 "type": "SaasBroker::Api::Resources::RegenerateApiToken",
 "db_user_id": 2,
 "user_email": "someuser@somecompany.com",
 "payload": {
 "path": "/settings/tokens/_UjhYvyyEjM9L2SgWd0qsw/regenerate",
 "queryString": "",
 "method": "POST",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_4) Appl",
 "referer": "http://somebroker.pact.dius.com.au/settings/api-tokens",
 "params": {
 "resource_name": "regenerate_token",
 "token_uuid": "_UjhYvyyEjM9L2SgWd0qsw"
 }
 }
 },
 ...
],
 "_links": {
 "self": {
 "href":
"http://somebroker.pact.dius.com.au/audit?from=zHO0xNcjUseyU6DsisadXw"
 },
 "next": {
 "href":
"http://somebroker.pact.dius.com.au/audit?from=IlECUSbMLJLOy8gFbLLuIg"
 }
 }
}

https://pactflow.io/blog/audit-api/

GraphQL

PRODUCT

External API

Microservice D

Websockets

JSON/HTTP

JSON/HTTP
Microservice E

Protobufs/gRPC

Microservice F

Microservice G

Avro/tcp

What’s next for Pact?
Modern APIs

New Capabilities

Distributed systems are increasingly more
complicated, and enterprises need a solution to
polyglot integration technologies:

- Real-time web apps (Websockets, GraphQL)
- Event-based architectures (Kafka/Avro)
- High-performance microservices with gRPC and

Protobufs
- Function-as-a-Service (e.g. lambda)
- Legacy SOA apps with SOAP/XML
- External APIs

Team
Email: hello@pactflow.io
Web: pactflow.io
Twitter: @pactflow

Brought to you by

Matt Fellows - Founder + JS/Go/Rust Maintainer
@matthewfellows
mfellows@dius.com.au

Beth Skurrie - Founder + Ruby Maintainer/Pact Broker Creator
@bethesque
bskurrie@dius.com.au

Ron Holshausen - Founder + Pact JVM/Rust Maintainer
@uglyog
rholshausen@dius.com.au

mailto:hello@pactflow.io
https://pactflow.io
https://twitter.com/pactflow

